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This paper uses Labor Force Survey data for European countries to estimate national investment in
data assets, where the asset boundary is extended beyond that for software and databases as currently
defined in the System of National Accounts. We find that: (a) in 2011-2018, 1.4 percent of EU-28
employment was engaged in the formation of (software and) data assets, with a mean growth rate of 5
percent per annum (pa); (b) on average in 2011-2016, expanding the asset boundary raises the level of
own-account GFCF in software and databases in the EU-16 by 61 percent, and mean growth in real
investment in own-account software and data assets to 6.9 percent pa, compared to 2.7 percent pa in
national accounts; (c) in 2011-2016, expansion of the asset boundary raises labor productivity growth
in the EU-13 from 0.79 percent to 0.83 percent pa, and the contribution of software and data capital
deepening over three-fold, from 0.03 percent to 0.10 percent pa.
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1. INTRODUCTION

Critical aspects of the latest stage in the ICT revolution include the Internet of
Things (IoT) and artificial intelligence (Al). Related is rapid growth in a vast
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collection of data/information available for analysis and the advancement of
knowledge.! Eric Schmidt is quoted as saying that as much data is created every
two days as was from the dawn of civilization to 2003 (Wong, 2012). IDC (Gantz
and Reinsel, 2010) project that between 2009 and 2020 the volume (stock) of data
created will have grown over forty-fold.

Analysis of data is not a new activity. Firms, other agents and humankind
have long sought to acquire knowledge from information. What has changed is the
scale and ubiquity of that activity. Developments in ICT mean that far more data
is being created (captured), stored, combined and aggregated in more systematic
ways; with greater opportunities for richer, more complex, analysis.

Acquisition of knowledge from data generates an economic return in the form
of higher revenues or lower costs. Therefore, provided they meet asset criteria of
repeated contribution to production over more than one year, the case for con-
sidering data and the knowledge acquired from data as assets is clear. Databases
have been classified as an asset in the System of National Accounts (SNA) (United
Nations, 2008) since 1993.

Goodridge et al. (2015) and Goodridge and Haskel (2015a, 2015b) document
fast growth in UK employment engaged in the transformation and analysis of
data, and thus in UK investment in data assets and their contribution to growth.
We seek to build on that work. Our two primary contributions are that we: (a) first,
present harmonized estimates of investment in data assets based on an expanded
asset boundary across EU-28 countries?; and (b) second, we estimate the contribu-
tion of data capital deepening to growth in productivity.

In general we find that over half (57 percent) of employment engaged in soft-
ware and data capital formation is already accounted for in national accounts mea-
surement of own-account investment in software and databases. The remainder is
largely outside the asset boundary as currently defined in the SNA. That element
outside the current asset boundary is growing faster than the national accounts
measure in a number of European countries.

Our more detailed findings are as follows. First, in 2011-2018, 1.4 percent of
EU-28 employment was engaged in the formation of own-account software and
data assets. Second, in the EU-28 in 2011-2018, mean growth in employment
engaged in own-account software and data capital formation was 5 percent per
annum (pa). Third, combined with estimates of wage and non-wage costs, our esti-
mates imply that extending the asset boundary raises EU-16 investment in own-
account software and data assets by around 61 percent on average in 2011-2016.
Fourth, in the EU-16 in 2011-2016, mean growth in newly defined real investment
in own-account software and data assets was 6.9 percent pa, compared to 2.7 per-
cent pa in national accounts. Fifth, in the context of growth-accounting, incorpo-
rating our expanded definition of investment changes both output and input. In
the EU-13 in 2011-2016: (i) labor productivity growth is raised from 0.79 percent

IConnections between items of capital equipment and the wider internet (IoT) use data and create
(“exhaust”) data as a by-product. Al technologies provide new and powerful methods to enhance the
analysis of data.

This paper was written before the UK exited the European Union. References to the EU-28, EU-
16 and EU-13 therefore include the UK.
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pa to 0.83 percent pa, which translates to €6.7bn pa of additional output growth in
2016 if applied to the EU-28 aggregate’ and (ii) the contribution of capital deepen-
ing in software and data assets is raised over three-fold, from 0.03 percent pa to 0.1
percent pa, which translates to €9.4bn pa in 2016 if applied to the EU-28
aggregate.

In the next section we review the relevant literature. In section three we review
the treatment of data and databases in the SNA and implications for measurement.
In section four we define our framework to show how data relates to information
and knowledge and discuss it in the light of the SNA. In section five we document
employment engaged in (own-account software and) data capital formation in the
EU-28 and construct new estimates of investment in the EU-16. In section six, we
estimate the economic impact of expanding the asset boundary for software and
data on growth-accounting measures for the EU-13% and provide a range of sensi-
tivity analyses to the underlying assumptions. Section seven concludes.

2. EXISTING LITERATURE

The terms data, information and knowledge; are often used interchangeably.
The framework in Goodridge et al. (2015) and Goodridge and Haskel (2015a,
2015b) seeks to give them a more precise context, drawing on definitions from the
information science and economics literature, also summarized in Rassier et al.
(2019).

Ackoff (1989) introduced the data-information-knowledge-wisdom (DIKW)
hierarchy defining: data as symbols representing properties; information as pro-
cessed data containing descriptions, where processing serves to increase usefulness;
knowledge as conveyed by instructions; and wisdom as ability to increase effec-
tiveness. The transmission of information to knowledge is described as analytic
thinking.

Dictionary definitions refer to data as: (i) quantities and symbols; or (ii)
information (Statistics Canada, 2019a). One of the descriptions in the online
Merriam-Webster dictionary defines data as something “that must be processed to
be meaningful” (Statistics Canada, 2019a). Statistics Canada (2019a) define data
as “observations that have been converted into a digital form that can be stored,
transmitted or processed and from which knowledge can be drawn.” In their frame-
work, observations are an intangible raw material and data are something that is
digitized, stored and can be analyzed.

Shapiro and Varian (1998) define information as digitized data. Boisot and
Canals (2004) distinguish between data and information and argue that information

3Estimated as 0.05 percent (0.05 percent rather than 0.04 percent, due to rounding) multiplied by
EU-28 nominal value-added in 2016 (€13,397 bn), where EU-28 value-added is the sum of PPP(GDP)-

adjusted measured nominal value-added in EU-28 countries. )
“Note, our estimates of employment are for the EU-28, estimates of investment are for the EU-16,

and growth accounting analyses are for the EU-13. The reason is that we have estimates of employment
for all EU-28 countries. However, we are only able to construct estimates of national accounts own-
account investment in software and databases for EU-16 countries. Additionally, growth-accounting
data in EUKLEMS is incomplete for some countries so we are only able to conduct that analysis on
EU-13 countries.

© 2021 The Authors. Review of Income and Wealth published by John Wiley & Sons Ltd on behalf of
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is regularities in data which agents attempt to extract (at a cost). Following Arrow
(1984) they define knowledge as a set of expectations modified by new informa-
tion. Bakhshi ez al. (2014) argue that to generate value, raw data must be processed
and structured into: (a) information, defined as meaningful statements about the
state of the world; and (b) knowledge, defined as models of relationships between
variables, which can be used to inform action.

In the economics literature, definitions of knowledge use terms includ-
ing instructions, ideas, recipes or blueprints (Romer, 1990, 1992; Jones, 2005).
Fransman (1998) notes different knowledge can be formed from the same informa-
tion suggesting information can be used repeatedly in the formation of knowledge.

Mokyr (2003) argues that knowledge exists in the human mind implying that
knowledge constitutes an understanding of information. Mokyr (2003) also intro-
duces a distinction between propositional and prescriptive knowledge. The former
catalogues natural phenomena and regularities and includes knowledge of nature,
properties (i.e. science) and geography. Prescriptive knowledge has some base in
propositional knowledge but prescribes actions for the purposes of production and
so can be thought of in terms such as recipes, blueprints, techniques and instruc-
tions. Romer (1990) also distinguishes between basic and commercial knowledge.

The R&D literature distinguishes been basic and applied R&D according to
features described by Romer (1990) and Mokyr (2003) including the property of
excludability. Basic knowledge is freely available to all agents (calculus or economic
theory for example) but applied (commercial) knowledge, produced or acquired by
firms, is not. Mokyr (2003) notes the two are linked. Commercial knowledge can
derive from freely available knowledge and in turn can feed back and enhance the
epistemic base, creating a positive feedback between science and innovation.

The justification for treating data, and the knowledge acquired from data,
as capital is inherent in the intangibles literature, which follows on from the sem-
inal work of Corrado et al. (2005, 2009) and applied by Marrano et al. (2009)
and Fukao et al. (2009). Similarly, Jones (2005) refers to a “stock of knowledge
or ideas.” It is also present in earlier work. Machlup (1962) makes the case for
considering knowledge accumulation as capital formation, correctly noting that
the defining feature of investment is the devotion of current resources to future
productivity gain.

The treatment of data and databases in the SNA is summarized in Ahmad
and Van De Ven (2018) and Ahmad (2004, 2005a, 2005b).> Van De Ven (2017)
notes that the SNA has changed dramatically over the past decades and will con-
tinue to change as a consequence of changes in the environment of producing sta-
tistics. Increased creation and use of data is one such change. SNA recommendations
and their implications are discussed further in the next section.

Estimation of national accounts gross fixed capital formation (GFCF) is the
domain of national statistics authorities. Statistics Canada (2019a) discuss the con-
ceptual case for capitalization of data, databases and data science, using a wider
asset boundary than currently applied to databases in the SNA, and present esti-
mates for Canada (Statistics Canada, 2019b).° They present an information value

SAvailable at: https://unstats.un.org/unsd/nationalaccount/aegm.asp.
®Discussed in more detail in Appendix A.
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chain similar to the data value chain presented in Goodridge and Haskel (2015a,
2015b) and this paper. The US Bureau of Economic Analysis (BEA) have con-
ducted preliminary work on extending the asset boundary for data assets beyond
SNA recommendations in US national accounts (Rassier et al., 2019). In the UK,
the Office for National Statistics (ONS) have developed estimates of own-account
GFCF in software and databases to better capture the output of employees engaged
in database investment (McCrae and Roberts, 2019), based on occupations identi-
fied in Goodridge et al. (2015) and Goodridge and Haskel (2015a, 2015b).

3. DATA AND DATABASES IN THE SYSTEM OF NATIONAL AccouUNTs (SNA)

In the SNA (United Nations, 2008), assets are: “entities that must be owned by
some unit..., from which economic benefits are derived by their owner(s) by holding
them or using them over a period of time.” The SNA distinguishes between produced
and non-produced assets. Produced assets are those generated as output from pro-
duction processes that fall within the production boundary and include intellectual
property products (IPPs): “the result of research, development, investigation or inno-
vation leading to knowledge that the developers can market or use to their own benefit
in production.”

The 1993 SNA update recommended capitalization of software and “large”
databases, with databases considered a special case of software, defined as: “files
of data organized in such a way as to permit resource-effective access and use of the
data.” OECD (2010) recommend that: “a database should be recorded as a fixed
asset if a typical datum is expected to be stored on the database, or archived on a
secondary database, for more than one year.” The 2008 SNA update clarified cap-
italization criteria and dropped the restriction to large databases. Those clarifica-
tions are described in Ahmad and Van De Ven (2018) and Ahmad (2004, 2005a,
2005b), with the key point being that the SNA distinguishes sharply between data
and databases.

Like other assets, particularly IPPs, databases may be developed: (i) exclu-
sively for own final use; or (ii) for sale as an entity or by means of a license.” In the
case of databases developed for own final use (own-account capital formation), the
SNA recommends the sum of costs method of measurement, as used for own-
account software and R&D. Given that databases are part-software and the diffi-
culty in accurately distinguishing between employees working on software and
database capital formation, the asset class in national accounts is “software and
databases” and it is not separated into its two components.

According to the SNA, databases consist of two components: (a) the support-
ing software or database management system (DBMS), which provides or facilitates
access to the data; and (b) embodied data. Databases and the underlying DBMS
are an IPP and produced asset. However, in the SNA, data is a non-produced asset
created outside the production boundary. Clearly there are examples where data is
created as part of a production process. The reasoning is therefore partly pragmatic.

7With standard conditions applying for whether expenditures constitute capital formation i.e. eco-
nomic benefits to owners and repeated use in production for more than one year.
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It is argued that that if data (or information/knowledge in the form of data) were
treated as a produced asset, that would open the door to capitalization of all forms
of information/knowledge, including in written form or embedded in humans,
swamping the accounts and reducing their meaning (Ahmad and Van De Ven, 2018).

As a consequence, measured fixed capital formation in databases is recom-
mended to include just two components: (i) the cost of the DBMS, already recorded
in software; and (ii) costs associated with preparation and transfer (including digi-
tization) of data to the format/structure required by the database. As a result,
national statistics agencies generally assume that database investment is largely
captured by methods for measuring software investment.®

The SNA and OECD (2010) recommend that the value of embodied data and
the costs of data acquisition be excluded from measured capital formation in data-
bases. On embodied data, Ahmad (20052a) notes that attempts at valuation would be
impractical as it would arguably be necessary to include all costs incurred in all busi-
ness processes that generate data, but that the cost of transferring data to database
format is at least meaningfully measurable. That is consistent with methods for mea-
suring other own-account knowledge capital formation i.e. R&D GFCF does not
include a valuation of knowledge discovered or embedded in R&D output.” However,
the exclusion of costs of data acquisition seems at odds with the standard sum of costs
approach taken in valuing other own-account capital formation (Rassier et al., 2019).

As a result of all the above, the recommended sum of costs approach (Ahmad,
2005a) reduces to:

Total number of employees working on converting data with an ex-
pected working life of more than one year from one medium/format
onto that required by the database and on the DBMS application *

Average remuneration *
Proportion of time spent on these activities +

Other intermediate costs used in these activities (excluding any costs
associated with data acquisition) +

Notional operating surplus related to these activities (costs of cap-
ital services, for example capital services of scanning machines and
computers)

$Details on national methods to estimate capital formation in software and databases are provided
in Appendix A for a number of European countries. We also include details of experimental estimates
from Statistics Canada (2019a, 2019b), which go beyond SNA recommendations and extend the asset
boundary to include capital formation in data and data science, as well as databases.

9Alt¥10ugh we note that it does create an anomaly in the treatments of own-account and purchased
capital formation. Database purchases are valued at market prices, where prices will include a valuation
of information content. The same anomaly exists for purchased R&D where prices will include some
valuation of knowledge discovered. This is somewhat pragmatic as attempting to remove the value of
embodied information (or knowledge in the case of R&D) from market prices would be impractical.
However, Ahmad and Van De Ven (2018) state that the value of embodied information in database
purchases ought to be recorded in the accounts under transactions in goodwill, a non-produced asset
that is not a productive asset for the purposes of fixed capital formation, implying that database pur-
chases ought to be excluded from fixed capital formation entirely.

© 2021 The Authors. Review of Income and Wealth published by John Wiley & Sons Ltd on behalf of
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where costs should include an estimate of the net rate of return to capital in data-
base production and costs incurred in updating the database.!”

A key aspect of data capital formation not explicitly addressed in the SNA
and outside the SNA asset boundary for databases is activity in data analytics or
data science, which is the process of creating or extracting knowledge from data.
Goodridge and Haskel (2015a, 2015b) and Statistics Canada (2019a, 2019b) argue
that data science clearly meets the SNA and Frascati Manual definition of R&D:
“the value of expenditures on creative work undertaken on a systematic basis in order
to increase the stock of knowledge, including knowledge of man, culture and society,
and use of this stock of knowledge to devise new applications.” Ahmad and Van De
Ven (2018) note that extending the sum of costs approach to include data science
activity would result in a clear improvement to estimated investment.

Although data science is consistent with the definition of R&D, in practice it
does not appear to be included in measured R&D capital formation. As far as we
are aware, in most countries measurement of R&D is undertaken using surveys
sent to R&D performers known to the statistics authority. This is the case in the
UK and in Canada (Statistics Canada, 2019a). As a result, measurement is concen-
trated on known performers of traditional scientific R&D.

In the UK, survey respondents are explicitly asked about R&D activity in
software development, but not in database development or data science/analytics.
Since software expenditures are already capitalized, in the UK reported R&D
activity in software development is excluded from measured R&D output (GFCF)
to avoid double-counting. Firms are not provided with further guidance or defini-
tions. If they consider their data science activities to be a form of R&D they may
include them in their response, but if they classify those expenditures under soft-
ware development, they will subsequently be excluded from R&D GFCF.!!

Therefore, whilst data science meets the definition of R&D in principle it is,
to the best of our knowledge, not included in measured R&D output in practice.
Some data science activity will inevitably be unintentionally included in estimates
of own-account investment in software and databases because occupations iden-
tified as engaged in the writing of software are also engaged in the transforma-
tion and analysis of data (Goodridge e? al., 2015; Goodridge and Haskel, 2015a,
2015b). In some cases, the occupational classification is not sufficiently granular to
distinguish between them, and in other cases the same employees undertake each
activity. For this reason, we argue that investments in the extraction of knowledge
from data are best considered in the context of software and data(bases), rather
than R&D or a new asset category.

'0Provided updates have a working life fgreater than one year. ) )
For there to be double-counting (i.e. for data science activity to be recorded as capital formation

in both: (i) software and databases and (ii) R&D; occupations identified in measurement of software
and database capital formation would need to include those engaged in data science, including mathe-
matical, statistical, economic and other analytical occupations, as well as those typically associated with
software creation. In reviewing the methods of European national statistics agencies (Appendix A), we
show that such occupations are not typically included in measurement of own-account software and
database capital formation. Exceptions are the UK and Germany, which do include some of these oc-
cupations. Additionally, the activity would need to be recorded as R&D capital formation. Our under-
standing of UK practice is that it is not, in that country at least.
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4. Our FRAMEWORK

In Figure 1 we present a simplified exposition of the data value chain, which uses
concepts similar to those described in Statistics Canada (2019a, 2019b), Nguyen and
Paczos (2020) and Mayer-Schonberger and Cukier (2013). The value chain is pre-
sented in three stages to summarize the production process for information and knowl-
edge. Investment is defined as total costs incurred in the creation of information,
defined as computerized analyzable data, and knowledge, defined as an understanding
of (or insights from) information to be used in the production of goods and services.!?
Although presented linearly, feedbacks exist between stages. The three stages can exist
in-house within the same vertically integrated firm or in distinct specialist firms.

4.1. Data-Building/ Transformation Stage

The top of Figure 1 highlights the data-building or transformation process,
which transforms observations (unprocessed data, which may or may not have a
cost)!? into computerized data of a usable and analytical format (information).
Once transformed, data are a (produced) asset (information) and the production
of information is capital formation. Data building (transformation) may involve
digitizing, structuring, formatting, cleaning, aggregating or matching, and is some-
times referred to as: data management; data acquisition; data warehousing; or
ETL (Extract, Transform, Load). The costs of transformation may be low or (close
to) zero where the process is automated.'#

4.2. Knowledge Creation

The second stage is the knowledge creation process, usually referred to as data
analytics or data science. Other terms include: data/text mining; knowledge recov-
ery; business intelligence; and machine learning; with the latter referring to the use
of Al to discover correlations. This stage takes the information output of the data-
building stage and uses it to conduct analysis. The output is knowledge created
from analysis of information to be applied in final production. Different knowl-
edge can be formed from the same information (Fransman, 1998) and information
can be used repeatedly in the formation of knowledge. Again, direct costs may be
low if the process is automated (e.g. machine learning).'>

20ur framework for estimating GFCF in data (transformation and knowledge creation) is based
on total costs incurred, which is consistent with methods for other intangibles in national accounts and
those outside the SNA framework (Corrado et al., 2005, Goodridge et al., 2014). As with other intan-
gibles, there may be a divergence (or mark-up) between the value of (unique) knowledge assets (and the
capital services they generate) and the costs incurred in their creation. Ideally we would be able to ob-
serve their value in market prices. However, as these assets are typically created and used in-house, we

instead estimate investment by observing costs of production. ) .
BWhere there is a purchase, the acquisition of data is an incurred cost, including where already

transformed data are purchased for further transformation. They are an intermediate cost if used
within the accounting period and a capital expenditure if used repeatedly over more than one account-
ing period (although we note that it may be difficult to distinguish for the practical purposes of mea-
surement). Where observations are created as a by-product (e.g. exhaust data) of some other process,

there is no incurred cost.

14Where automated, measured costs should include the nominal capital services of hardware and
software used in automation.

15But measured costs should again include the nominal capital services of hardware and software
(AI) used in extracting knowledge from information.
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OBSERVATIONS
= Unprocessed data
e.g. retail transactions,

weather,

web scrapings, etc.

“EXTRACT,
TRANSFORM, LOAD”
(ETL):

‘Data Acquisition’ or
‘Data Management’

DATA-
BUILDING
STAGE

TRANSFORMED DATA
= Information
(data in analytical format)

ANALYSIS
e.g, analytics, business intelligence, text mining,
sentiment analysis, machine-learning etc.

KNOWLEDGE
CREATION
STAGE

Intangible

capital (e.g.
organisational) KNOWLEDGE
and other PRODUCTION

= Understanding or
insights from information

resources for
implementation

W

IMPLEMENTATION: The use of knowledge capital
Note: may require co-investments in other intangibles e.g.
organisational capital, design or training

OuUTPUT
e.g. increased sales,
productivity growth, etc.

Figure 1. Data Value Chain

PRODUCTION/
OPERATIONS
STAGE

COMMERCIALISATION
OF KNOWLEDGE:
Application of “ideas” in
final production

Notes: Investment defined as costs incurred in the creation of information (computerized analyzable
data) and knowledge (acquired from information). Commercialization is the embodiment of knowledge
in final output. We use the term commercialization as our focus is on the market sector, but note that
the framework can be applied to the non-market sector.

Source: Authors’ representation (Goodridge and Haskel, 2015a, 2015b). “Raw records” are labeled
here as “observations.” [Colour figure can be viewed at wileyonlinelibrary.com]

4.3. Downstream Production of Final Goods and Services

The final stage incorporates the application or implementation of (pro-
duced) data-based insights in downstream production of final goods and services.
Knowledge could be used to generate additional revenue or reduce costs. For
instance, it could be a re-optimisation of processes based on knowledge derived
from information formed from observations emitted by sensors embedded in tan-
gible capital (Internet of Things). The downstream is an operations stage that does
not undertake capital formation but employs/rents labor and (tangible and knowl-
edge) capital to produce final goods and services. Implementation may require
complementary applications or co-investments of other forms of knowledge
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capital, such as organizational (business process change), design or reputational
(brand) capital. Information and data-based knowledge assets may also be used in
the upstream creation of other types of knowledge capital.

4.4. Implications for Measurement in Context of the SNA

The framework suggests measuring two types of capital formation: the cre-
ation of information; and knowledge. We argue that the framework is consistent
with the SNA in the following ways. First, measuring capital formation in informa-
tion (i.e. the transformation of data) is an extension but consistent with SNA and
OECD recommendations to measure the costs of data preparation, transfer and
digitization. However, occupations identified as engaged in information capital
formation ought to go beyond the software and database professionals typically
observed in national accounts estimation, to include all occupations engaged in
data transformation activity. Second, data-based knowledge creation (data science)
meets the SNA and Frascati Manual definition of R&D, but, for reasons described
above, is unlikely recorded in measured national accounts R&D GFCF in practice.
We believe our framework adds clarity, particularly in distinguishing between
observations (unprocessed data) and transformed data (information),'® which are
both simply “(embodied) data” in the SNA.

Like data in the SNA, in this framework observations do not constitute a
fixed asset and so for practical purposes can be regarded as a naturally occurring
non-produced good, typically generated as a by-product of some other process.
Alternatively, if observations are considered produced, they may be regarded as
an intermediate. Whether or not observations are produced is a difficult question,
conceptually. However, our key argument is that data does not constitute an asset
until it is transformed into a usable, analyzable, long-lived form that can repeatedly
be used in the extraction of knowledge and contribute to production. Therefore, in
this framework, generation of observations is not investment activity.

In contrast to observations (unprocessed data), information is digitized ana-
lyzable data and is a produced asset. Statistics Canada (2019a) note that the pro-
duction process that creates analyzable information (data in their nomenclature)
from observations (also observations in their nomenclature and also regarded as
non-produced) implies that it is a produced asset. This overcomes the objection that
capitalization opens the door to capitalization of all other forms of information,
since this framework requires that information be produced (computerized, trans-
formed, analyzable and long-lived). A paper-based telephone directory does not
constitute information unless digitized and transformed. The fact that information
assets are owned is another signal that they are produced (Statistics Canada, 2019a,
2019b). In this framework, knowledge extracted from data is also a produced asset.

Since data assets (information and knowledge) are typically created and used
in-house, the appropriate method for measuring capital formation is costs incurred
in creation. This can be done by adapting the SNA and OECD (2010) recommended
sum of costs approach to identify all workers engaged in the production of infor-
mation and knowledge. In the data transformation sector, this would encompass
job titles including: data administrator; data manager; data engineer; data entry

16Statistics Canada (2019a, 2019b) make the same distinction.
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and data control. Relevant job titles in the knowledge creation sector include: data
scientist; data engineer; business intelligence; analyst; statistician; and economist.
In practice, the occupational classifications used by statistics authorities are not
granular enough to identify many of these job titles and many will be recorded as
“software and database professionals” and other broad occupations (Goodridge et
al., 2015; Goodridge and Haskel, 2015a, 2015b). Their roles could include aspects
of both data transformation and knowledge creation, as well as software creation.
The non-rival nature of information and knowledge assets does present chal-
lenges related to multiple counting. Some assets will be created for own final use,
others for sale and some for both purposes. One practical way of dealing with this,
and the approach taken in this paper, is to simply measure all (data transformation
and analytics) activity at the macro level using the sum of costs method, regardless
of whether output is intended for own use or sale. While firms may purchase infor-
mation assets from other firms, and conduct further transformation, provided all
transformation activity is measured, then purchases need not be measured sepa-
rately. Costs of data acquisition can be incorporated into cost adjustment factors.!”
Similarly, firms may purchase analytics services from specialist firms but the macro
approach will capture the analytics activity. However, mark-ups present in the price
of traded information and knowledge assets will not be included using this
approach. An alternative approach would be to measure all purchases separately.
Then measurement of own-account production would require adjustment to avoid
multiple counting (i.e. to deduct production of assets intended for final sale).!8

5. DATA INVESTMENT ACTIVITY IN EU COUNTRIES
5.1. Employment Engaged in Data Capital Formation

In this section we present estimates of the volume of (software and) data
investment activity in EU-28 countries, using occupation-based estimates of
employment engaged in capital formation from the EU Labor Force Survey
(LFS)". Our approach is to identify all employment engaged in capital formation
regardless of whether assets are destined for sale or own final use.”’ The method
allows us to compare the volume of activity where: (a) the method is harmonized
across countries; and (b) the asset boundary is expanded to fully include both data
transformation and knowledge creation.?!

To identify workers engaged in capital formation, we inspect the International
Standard Classification of Occupations (ISCO-08) in light of: methods used in

I7If treated as an intermediate. If it is capital expenditure then it is purchased GFCF and the ac-

quired data generates capital services in the production of information.
An overview of national accounts methods to measure GFCF in software and databases is pro-

vided in Appendix A, including information on how statistics authorities deal with potential double
counting. Most countries make an adjustment to observed own-account activity to remove production

of software and databases destined for final sale, but the methods focus on software.
Data received on request from Eurostat.
20In forming estimates of investment, in the next section, we apply an adjustment to exclude capital

formatlon activity in software that is destined for final sale.
21Current national accounts methods mean these activities are partially included in measured

GFCF, mainly because occupations identified in national accounts measurement (largely software and
database professionals) spend some of their time working on data transformation and knowledge
creation.
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experimental estimates for Canada and national accounts in the UK, Sweden and
other EU countries;?*> and work in Goodridge et al. (2015) and Goodridge and
Haskel (2015a, 2015b).? Inspection of ISCO-08 suggests the list of occupations in
Table 1.

Some workers in these occupations will be engaged in either or both data
transformation and knowledge creation, and some will also be engaged in software
creation. We stress that occupational classifications are not sufficiently granular to
disentangle entirely workers engaged in software creation from those engaged in data
transformation and analysis. Further, even if classifications were sufficiently fine, in
practice both activities are sometimes undertaken by the same workers (Goodridge
et al., 2015; Goodridge and Haskel, 2015a, 2015b). As a result, our estimates of
employment engaged in capital formation are indicators of both software and data
investment activity and we are unable to separate our estimates into their three
respective components (software, data transformation and knowledge creation).
While we would expect data entry occupations to be engaged in data transforma-
tion, analytical occupations will typically be engaged in both transformation and
analytics, while ICT professionals may be engaged in one, two or all three activities.

Column 1 shows that we categorize our identified occupations in four groups:
(1) ICT (software and database) professionals; (2) Data Entry; (3) Other ICT; and
(4) Analytical. Columns 2 and 3 are ISCO codes and titles in each group. The iden-
tified occupations go beyond the ICT (software and database) professionals iden-
tified in Sweden and most other EU countries>* and include analytical occupations
similar to those identified by Statistics Canada (2019b) and, to a lesser extent, the
UK ONS. In their advice for estimating capital formation in software and data-
bases, OECD-Eurostat (OECD, 2020) recommend focusing on occupations in
ISCO 25, in particular codes 251 (software professionals) and 2521 (Database
designers and administrators).

Column 4 is our assumed time-use factor for each occupation group, to adjust
for the amount of time spent creating assets, informed by those used in the UK,
Sweden and Canada.? There is inevitably some subjectivity in time-use assumptions
that are not based on formal time-use surveys. Our reasoning for each is as follows.
On software and database professionals (group 1), the UK method assumes that
software professionals (SOC 2136) spend 50 percent of their time engaged in soft-
ware and database capital formation. That estimate is based on an informal survey
of the trade association, Intellect UK, which reported that software professionals
spend 70 percent of time on capital formation. The ONS chose to apply a lower
factor of 50 percent in line with OECD recommendations (Chamberlin ef al., 2000,
2007). Sweden assumes a range of 20-76 percent for ICT professionals (ISCO 25)
depending on their industry. We have chosen a factor of 50 percent although it could

22See A%pendix A.

23Who identify relevant workers and occupations by mapping keywords to member profiles on an
emplcztyment-based. social media network.

24See Appendix A.

25Qutlined in Tables Al, A2 and A4, respectively, in Appendix A. We note that OECD-Eurostat

(OECD, 2020) recommend a time-use factor of 50 percent where no other information is available and
that time-use factors do not exceed 50 percent on average (across all firms/industries). However, this
seems a conservative assumption in cases where occupations would typically be expected to spend most
of their time creating assets.
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be argued that a larger factor is more appropriate. The chosen factor recognizes that:
(1) the input of software and database professionals in the formation of software and
database assets is already measured in national accounts and most countries apply a
recommended time-use factor of 50 percent; (ii) the occupational group is broad
with some workers engaged in software activity, others in data activity, and others in
both; and (ii1) workers will not spend all of their time on capital formation activity.

On data entry (group 2), it could be argued that a factor of 100 percent is
appropriate, as in Statistics Canada (2019b), as these workers are likely fully
engaged in data transformation. However, some may spend at least some time per-
forming other administrative or clerical duties. We therefore choose a factor of 90
percent to account for most of their time.

On other ICT occupations (group 3), Table Al shows that the ONS apply
time-use factors of 5 percent—35 percent for similar occupations. Statistics Canada
(2019b) apply a factor of 30 percent to Computer and information systems manag-
ers. We choose a factor of 25 percent that is consistent with this range and is similar
to the factor used for IT managers and technicians in the UK method.

On analytical occupations (group 4) we note that, for similar occupations
included in the UK method, the factor chosen is just 10 percent, which is low but
likely reflects the intent to capture database production rather than data science.
From Table A4, Statistics Canada apply much larger factors to similar occupations,
in the range of 70 percent-90 percent when summed across activity in both data (i.e.
transformation) and data science. While many such occupations likely work on data
transformation and knowledge creation for much of their time, some, including
those more senior, do not. We therefore, somewhat arbitrarily, assume these occu-
pations on average spend two-thirds of their time engaged in data capital formation.

Column 5 presents the mean (2011-2018) percentage of employment from
each group in the total for the EU-28, after applying time-use factors. Over half (57
percent) of activity is from software and database professionals, followed by ana-
lytical occupations (20 percent), other ICT occupations (14 percent) and data entry
(9 percent). This accords with Goodridge et al. (2015) and Goodridge and Haskel
(2015a, 2015b) who find that of UK workers engaged in data capital formation,
65 percent are already accounted for in official UK measurement of own-account
investment in software and databases.

Charts detailing country-level information on levels and growth rates in
employment engaged in (software and) data capital formation are presented
in Appendix B. In brief, we find that: (a) 1.4 percent of EU-28 employment is
engaged in the formation of (software and) data assets, ranging from 3.5 percent
in Luxembourg (LU) to 0.5 percent in Greece (GR); (b) for the EU-28 as a whole,
growth in the volume of employment engaged in capital formation activity was 5
percent pa over the period 2011-2018, ranging from 12.9 percent pa in Portugal
(PT) to —2.4 percent pa in Latvia (LV).

5.2. Estimating Data Investment and Comparison with National Accounts

In this section we use our data on occupation-employment to form estimates
of investment in (software and) data assets, where estimates are: (a) harmonized
across countries; and (b) based on an expanded asset boundary that incorporates
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data transformation and knowledge creation. We compare our results with esti-
mates of own-account capital formation in software and databases in national
accounts to gain some understanding of how extending the asset boundary changes
estimates of investment. As we only have national accounts own-account informa-
tion for sixteen of the countries in our dataset, we carry out the analysis for the
EU-16. We convert our employment values to nominal investment using the sum
of costs method, as also used to estimate own-account investment in software and
databases in national accounts.

First, to form credible estimates that maintain consistency with national
accounting methods in EU countries, we adjust our estimates of employment to
exclude labor input on software destined for final sale. This is necessary to avoid
double-counting with purchased software, which is already included in measured
national accounts GFCF. As detailed in information for the UK, Sweden and
other countries in Appendix A this is a standard adjustment typically carried out
by excluding the input of identified occupations in the software industry (NACE
62, Computer programing, consultancy and related activities).

With ideal data we could simply subtract ISCO 251 (software professionals)
employment in NACE 62 from our ISCO 25 whole economy estimates. However,
EU LFS sample sizes are not sufficient for reliable estimates at both detailed occu-
pation- and industry-level. We do however have country-year estimates of total
employment in NACE 62, for all occupations. We therefore subtract NACE 62
employment from ISCO 25 employment. We note however that this implicitly
assumes that all workers in NACE 62 are in ISCO 251 and engaged in software
capital formation, which is an over-adjustment but we lack more precise infor-
mation. Thus we avoid potentially double-counting with purchased software and
ensure that the adjustment is largest in countries with a larger software industry.

Second, after excluding employees in NACE 62, we apply our time-use factors
(see Table 1) to form estimates of time-use adjusted labor input to software and
data capital formation. Third, we must convert time-use adjusted employment to
wage costs in capital formation. Ideally we would do this using country-occupation
salaries but unfortunately this information is not available from our EU LFS data.
We do however have labor composition data from EUKLEMS (Stehrer et al.,
2019), which we can use to derive estimates of average wages for workers with high,
medium and low educational attainment in each country.”® We therefore multiply
time-use adjusted employment by a derived wage for each occupational group in
each country-year. For software and database professionals, other ICT profession-
als and analytical occupations, we use the average annual wage of workers with
high and medium (combined) educational attainment. For data entry we use the
average annual wage for low educational attainment. After summing the wagebills

2The EUKLEMS Labor file includes shares of employment and labor compensation by labor
composition group for characteristics of educational attainment (high, medium, low), age and gender.
Summing across other characteristics (gender and age) gives shares for each educational attainment
group. Applying the shares to total employment and total labor compensation, respectively, gives esti-
mates of employment and labor compensation in each education group. We then divide the group
wagebill (high, medium or low) by group employment to derive an average salary for each attainment
group. We carry out the same procedure for an aggregate of the high and medium groups, effectively
giving us a weighted average salary for high and medium attainment workers.
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for each occupational group, we have estimates of time-use adjusted wage costs in
(software and) data capital formation.

Fourth, to account for non-wage costs (non-wage labor costs, overheads,
intermediates and capital services including the net rate of return to capital) we
multiply wage costs by two, which is in line with methods in the UK, Sweden and
other EU countries.?” This gives us estimates of (own-account software and) data
investment according to an expanded asset boundary, based on total costs incurred
in capital formation.

To estimate the scale of how much estimates of investment in software and
data change after extending the asset boundary, we compare our estimates with
those in national accounts. We have estimates of national accounts GFCF in soft-
ware and databases from EUKLEMS for EU-26 countries?® but those estimates
include expenditures on purchased software.?” The correct comparator for our esti-
mates is national accounts investment with the purchased element removed (i.e.
own-account investment).

National accounts GFCF in software and databases separated into purchased
and own-account components are not available for most EU countries. We have
however found some country-specific estimates of the proportion of GFCF that is
own-account for EU-16 countries.’® Full details on the proportion of GFCF that
is own-account in each EU-16 country and the source of the information is pro-
vided in Appendix F. Table A16 shows that the proportion varies widely across
countries but is fairly stable within countries and across time.

Figure 2 presents the mean (2011-2016)3! ratio of our newly constructed mea-
sure of (own-account software and) data investment (PNNGHE) to our estimates of
own-account GFCF in software and databases in national accounts (PNN; 2 N
EU-16 countries. A ratio close to one suggests that coverage of (occupations in)
national accounts own-account GFCF already well captures data capital forma-
tion activity according to the asset boundary used in this paper. A ratio consider-
ably greater than one implies that extending the asset boundary to include the
labor input of all occupations in Table 1 substantially raises the estimate of capital
formation. The method used means that identified additional investment (over and
above that in national accounts) is largely due to the input of analytical

2ISee Appendix A. The adjustment factor used for experimental estimates in Canada is 1.55. The
factor used in estimating own-account GFCF in software and databases is: 2.2 in Germany (DE); 2.4 in
Denmark (DK, 2.2 in the non-market sector); 1 in Estonia (EE); 2.7 in Sweden (SE); and approximately
2 in the UK. We choose a factor of 2, which lies close to the middle of this range (an unweighted average

of these seven values gives a factor of 2.01) and allows us to harmonize our method across countries.
28Estimates for Belgium (BE) and Croatia (HR) are not available from EUKLEMS. o
Based on information for the UK and Sweden (see Appendix A) we conjecture that the majority

of purchased expenditure is on pre-packaged and custom software, rather than databases. )
30The UK, Czechia (CZ) and (in a sense) Slovenia (SI) (see Appendix F) publish annual estimates.

Belgium (BE), Denmark (DK), Estonia (EE) and Sweden (SE) publish a point estimate for an individ-
ual year in their GNI inventories. Austria (AT), Cyprus (CY), Ireland (IE), Luxembourg (LU), Malta
(MT) and Slovakia (SK) provided annual estimates after we contacted the national statistics agency,
and Germany (DE), the Netherlands (NL), Portugal (PT) and Romania (RO) provided us with average
values. We were unable to gather any estimates for Bulgaria (BG), Spain (ES), Finland (FI), France
(FR), Greece (GR), Croatia (HR), Hungary (HU), Italy (IT), Lithuania (LT), Latvia (LV) and Poland

(PL).
3 Estimates of GFCF in software and databases in EUKLEMS are missing for 2017 for some
countries. We therefore only show data up to 2016.
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Figure 2. Ratio of GHE Investment (this Paper) to National Accounts Own-account GFCF in
Software and Databases (P,N°"E: PyN’, ), Mean (2011-16), by Country (EU-16)

Notes: Y-axis is mean ratio of nominal investment in (own-account software and) data estimated in
this paper (P, N°"E) to our estimate of nominal national accounts own-account investment in software
and databases (PyN! ). Solid horizontal line is 1. Data are averages for 2011-2016.

Source: Authors’ estimates. P, NHE are estimates constructed for this paper, based on
employment values from the EU LFS and wage rates for labor composition groups from EUKLEMS
(Stehrer et al., 2019). National accounts own-account GFCF in software and databases (Py N! ) are
authors’ estimates derived using country-specific estimates of the proportion of GFCF that is own-
account (see Appendix F) and estimates of GFCF in software and databases from EUKLEMS. Some
EU LFS employment values are imputed for missing and unpublished observations. For details, see
Table A12, Appendix C. Some EU LFS employment values are flagged by Eurostat for low reliability.
For details, see Table A11, Appendix C. [Colour figure can be viewed at wileyonlinelibrary.com]

occupations (group 4) and to a lesser extent, other ICT (group 3) and data entry
(group 2) occupations.??

The mean ratio of 1.61 for the EU-16 aggregate® suggests that identifying a
wider range of occupations engaged in capital formation raises own-account
GFCF by around 60 percent. The ratio is less than one in: Malta (MT), Austria
(AT), Denmark (DK) and Czechia (CZ); suggesting that our adjustment to avoid
double-counting with purchased software is, for these countries at least, an over-
adjustment. The ratio is greater than one but lower than for the EU-16 aggregate
in: Ireland (IE); the Netherlands (NL); and Sweden (SE). It is higher than the ratio

2Information in Appendix A confirms that countries largely base own-account estimates on the
input of software and database professionals (ISCO 25), as recommended by OECD-Eurostat (OECD,
2020). Some countries also include other ICT and data entry occupations (e.g. Austria (AT) and
Germany (DE)). With the exceptions of the UK (economists and other analytical occupations) and
Germany (DE) (data scientists), input from analytical occupations are not typically included in estima-
tion of GFCF in European countries. .

BConstructed using PPP(GDP)-adjusted values of investment. PPP data downloaded from
Eurostat. https://ec.europa.eu/eurostat/web/purchasing-power-parities/data/database.
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for the EU-16 aggregate for all other countries. The particularly high value for
Luxembourg (LU) reflects very large estimates of employment in analytical occu-
pations. The ratio is also relatively high in the Slovak Republic (SK), Cyprus (CY),
Portugal (PT) and Romania (RO). Of these countries, LU, SK, PT, and, to a lesser
extent CY, all report low shares of own-account GFCF in total GFCF in software
and databases, which may partly explain these results. The results suggest that
extending the asset boundary would substantially increase measured own-account
investment in these four countries in particular.

The above data are averages. Figure 3 presents annual estimates of our measures
of nominal investment (P N°"E) and national accounts own-account GFCF (PyN! ).

In Appendix H, we study the correlation between our measure of investment
and other forms of (tangible and intangible) capital formation. We find: a posi-
tive correlation with measured investment in software and databases, as expected
due to consistency in methods of measurement; a negative correlation with R&D,
providing some support for our view that R&D as measured in national accounts
does not typically include activity in data analytics; and a positive correlation
with mineral exploration. We consider the possibility of double counting with
R&D and mineral exploration in sensitivity analyses presented in Table 3.

While comparisons of nominal investment are interesting, it is changes in real
volumes that determine productivity growth and the contribution of capital. We study
implications for growth in the next section but here we first compare annual changes in
real investment in EU-16 countries. Real investment is derived using (country-specific)
investment price indices for software and databases from EUKLEMS.** Figure 4 com-
pares growth in the two measures of real investment (AInN“"Eand AlnN;a). We esti-
mate growth in newly expanded real investment (AInNHE) of 6.7 percent pa for the
EU-16, compared to 2.7 percent pa in national accounts (AlnN:) »)- The difference is
particularly large in Germany (DE) and Romania (RO).

6. Economic IMPACT oF DATA CAPITAL FORMATION ON GROWTH
6.1. Framework

In this section we use our new estimates of investment to quantify the eco-
nomic impact of expanding the scope of (software and data) capital formation in a

34With ideal data we would construct our own price index for our measure of investment, following
the method typically used for own-account capital formation in national accounts. That is, construct an
own-account price index based on the wages of relevant occupations and prices for other inputs to
capital formation, and assuming no productivity gain in production. However these input price data
were not available. Instead we use the EUKLEMS price index for software and databases in national
accounts. We note however that the EUKLEMS investment price index for software and databases is
implicitly a weighted average of price indices for purchased and own-account investment, and it is the
latter which we measure. Although of course measured own-account prices are based on the input of
occupations identified by national statistics agencies (mainly software and database professionals) and
do not include the wages of other occupations, such as analysts, that we identify in this paper. As mea-
sured purchased software prices do not typically rise as fast as measured own-account prices, the likely
impact is that we under-estimate price increases and therefore over-estimate real GFCF growth. As a
result, in the next section, we likely over-estimate adjusted growth in labor productivity and the contri-
bution of software and data capital deepening. However, as the EUKLEMS price index includes an
own-account component, these errors are likely small.
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Figure 3. Nominal Investment: GHE (P, N#E, this Paper) vs National Accounts Own Account
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Notes: Estimates in billions of national currency units. EU-16 aggregate is € billions, and is the sum
of PPP(GDP)-adjusted values for underlying countries. Estimates of own-account GFCF in 2017 are
missing in EUKLEMS for CY, EE, IE, PT, RO and SE. Therefore estimates for these countries and the
EU-16 are up to 2016.

Source: Authors’ estimates. P\NE (this paper, blue line) based on employment values from the
EU LFS and wage rates for labor composition groups from EUKLEMS (Stehrer ez al., 2019). National
accounts own-account GFCF in software and databases (Py N/, ted line) are authors’ estimates derived
using country-specific estimates of the proportion of GFCF that is own-account (see Appendix F) and
estimates of GFCF in software and databases from EUKLEMS. Some EU LFS employment values are
imputed for missing and unpublished observations. For details, see Table A12, Appendix C. Some EU
LFS employment values are flagged by Eurostat for low reliability. For details, see Table A11, Appendix C.

growth-accounting context when estimation is harmonized across countries, by com-
paring new estimates of the growth decomposition with those in the EUKLEMS
database (Stehrer et al., 2019). We carry out the analysis for EU-13 countries.?®

We first set out a simple model that is typical in the intangibles literature (e.g.
Corrado et al., 2005), where part of investment is already included in measured
national accounts GFCF and another part is newly identified investment as a
result of expansion of the asset boundary.

First, we set out how measured investment in software and databases (PyN’)
relates to estimates in this paper (P NHE). In the notation below, N is real investment
in software and data and P, is its price. Superscripts SHE refers to estimates in this
paper, ' to measured national accounts estimates and * to newly identified additional
investment (i.e. investment over and above that recorded in national accounts).
Subscripts purch and _, refer to purchased and own-account investments respectively:

30f the EU-16 countries for which we estimate investment, growth-accounting data for Cyprus
(CY), Malta (MT) and Romania (RO) are incomplete in the EUKLEMS database.
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Figure 4. Mean Growth Rate in Real GHE Investment (AlInN ¢#£, this Paper) vs Mean Growth in
Real (National Accounts) GFCF in Own-Account Software and Databases (AlnN;a), Mean (2011
2016), by Country (EU-16)

Notes: Each category of nominal investment deflated using software and database investment price
index from EUKLEMS. Y-axis is mean growth rate. Growth rates calculated as changes in the natural
log. Estimates for the EU-16 aggregate constructed as a weighted average of country growth rates using
PPP(GDP)-adjusted nominal investment as weights. Solid horizontal line highlights mean growth rate
in real GHE investment (AlnN 9#£) for the EU-16 (6.9 percent pa). Data are averages for 2011-2016.

Source: Authors’ estimates. GHE data investment based on employment values from the EU LFS
and wage rates for labor composition groups from EUKLEMS (Stehrer et al., 2019). National accounts
own-account GFCF derived using country-specific estimates of the proportion of GFCF that is own-
account (see Appendix F) and estimates of GFCF in software and databases from EUKLEMS. Some
EU LFS employment values are imputed for missing and unpublished observations. For details, see
Table A12, Appendix C. Some EU LFS employment values are flagged by Eurostat for low reliability.
For details, see Table A11, Appendix C. [Colour figure can be viewed at wileyonlinelibrary.com]

PN N'= PN Np,urch + PN N(;a

— GHE
PyN=PyN! ,+PyN

=PyN'+PyN*
PyN*=PyN“*—pP\N/

()

Equation (1) says that total measured national accounts GFCF in software
and databases (PyN’) is the sum of purchased (PNNI;mh) and own-account

(PyN!,) components. An expanded definition of total investment (PyN) equals
the sum of national accounts purchased software investment3® (Py N [’) o) a0d the

36From discussions with national statistics agencies and reviews of their methods, to the best of our
knowledge national accounts purchased investment largely, if not wholly, consists of purchases of soft-
ware rather than databases. See Appendix for further information.
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measure of investment constructed in this paper (Py N “HE). Py N is also equivalent
to total measured national accounts GFCF in software and databases (P N’) plus
newly identified additional investment due to expansion of the asset boundary
(Py N ¥). That additional investment can also be derived as the measure constructed
in this paper (Py N 7€) minus measured own-account GFCF (Py N T

How does this relate to national accounts output (GDP)? Ignoring govern-
ment output and net trade, from the expenditure side, measured (V) and adjusted
(Q) output, where adjusted output includes newly identified investment, are:

P, V=P.C+PI+PyN'
(2 PyQ=P-C+PI+PyN
=P, V+PyN"

where Vis real value-added, Q is adjusted real value-added, C is real consumption,
1 1is real investment in all (tangible and intangible) assets except software and data,
and P are their prices. Equation (2) simply states that adjusted nominal output
(PoQ) is equal to measured nominal output (P}, V) plus newly identified nominal
investment (Py N *).%7

The relation between measured (V) and adjusted (Q) real output growth can
be written as:

—_JV N* *

AlnQ, =s,AlnV, +s, AlnN,
3) =<1—sg‘> AlnV, +5) AlnN?
=AlnV,+sy (AN} -AlnV,)

where N* is newly identified real investment and 5o are shares in adjusted nominal
value-added which sum to one.®® From (3) it is clear that, provided sg " >0, faster

growth in N* relative to V" will result in AInQ > AlnV’, showing that capitalization
of N* changes both input and output. The sources of growth decomposition for
measured and adjusted labor productivity growth can be written as:

Aln(V/H),=sy Aln(X /H),+s% Aln(R'/H) +AInTFP,

“) Aln(Q/H), zs’Qf Aln(X/H), +s§A1n(R /H),+AInTFP,

3TThis is true for the market sector where expansion of the asset boundary results in the identifica-
tion and capitalization of additional (gross) output, with the value of that output estimated as costs
incurred in production. The adjustment to output is different in the non-market sector. In general, for
most countries, government output is estimated as the sum of costs incurred in generating output. Since
we also estimate investment as the sum of costs incurred, capitalization of data in the non-market sector
means that the correct adjustment involves adding a measure of consumption of fixed capital (CFC i.e.
depreciation) to output rather than a measure of GFCF. As our EU LFS occupation data are at whole
economy level, we are unable to produce separate estimates for the market and non-market sectors. Our
analysis therefore implicitly assumes that market GFCF and non-market CFC are growing at similar

rates,% which may not be correct. We note this inaccuracy. ) ) o
Estimated as averages of the share in the current and previous period to form a superlative index.
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where total factor productivity (TFP) is defined as a residual, H are annual person-
hours and X is an index of labor (L) and (tangible and intangible) capital inputs
(K) except software and databases. R is the stock of software and data capital. s is
an income share for each factor input Z(=X, R), estimated as an average over two
periods (we omit the usual overbar to ease notation):*

, 1| (P2 P,Z
© ‘o EK@),*(@)H]

Capital (K and R; K only shown here for simplicity) and labor (L) services
are translog aggregations over heterogeneous capital types a and labor types b,
respectively:

(6) AlnK = )’ sK°AInK,,
(7) AlnL= ) sAlnH,,

where shares (s) are of total capital and labor payments for each type, again aver-
aged over the current and previous period in order to form a superlative index:

) b= 1| (Pl + PryLy
L 2 pP, L/, pP,LJj,_

Pr K Py K
(9) SKa = l Ka*™a + Ka™™a
L) PyK /, PyK /,

Labor is in natural units, hours. For capital (K, R), stocks for each type (a) are
constructed using nominal investment and a price index for capital goods of each
type in a perpetual inventory model (PIM) so that:

Koo= T (155 K, .
(10) Pl .
Rt:P—‘}'(l—é )Rl—l

N

where & is an asset-specific depreciation rate. The inputs side of the model is com-
pleted by the user-cost relation between P, (or Py) and P, (or Pp):

(11) Pr=Py (p+8%—(APy/Py))

¥Shares of measured value-added (V) are estimated in the same way with measured value-added
as the denominator.
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where AP/P is the capital gain/loss from holding the asset and p is an economy-wide
nominal net rate of return estimated such that gross operating surplus is exhausted.
As set out in Corrado et al. (2020), when the asset boundary is expanded to incor-
porate newly identified investment, the wedge between measured and adjusted
growth consists of four terms, each of which can be seen in the equations above.
They are as follows.

6.1.1. Wedge in Output Growth
First, on the output side, there is the change to growth in output or labor pro-

ductivity, as set out in equation (3), which can be written as:

(12) AlnQ, — AlnV, =55 (AlnN;* - AlnV,)

6.1.2. Wedge in Contribution of Software and Data Capital Deepening

Second, on the input side, from equation (4) there is a wedge between the mea-
sured and adjusted contribution of capital deepening in software and data(bases):

(13) sy Aln(R'/H), - s§AR/H),

where ' denotes measured. Equation (13) shows that the difference is due to a
change to the income share and also a change to growth in software and data cap-
ital services (R).
6.1.3. Wedge in Contribution of Other Factor Inputs

Third, from equation (4), there is an additional effect on the input side due to
a change to the contribution of other factor inputs (X):

(14) st Aln(X /H), - sy AX/H),

The difference is due to a change in the income shares for other factor inputs
(L and K), summarized in s¥.

6.1.4. Wedge in Total Factor Productivity (TFP) Growth

Finally, equation (4) shows that there is a difference between measured and
adjusted growth in total factor productivity, which is the cumulative effect of the
other three terms.

Below we estimate each of these effects using data from the EUKLEMS
(Stehrer et al., 2019) database.

6.2. Capitalization of Newly Identified Investment in Data

In the notation that follows, ' refers to measured (i.e. national accounts) data.
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6.2.1. Output

First, to estimate the change to output, we estimate P, N* as in the final line
of equation (1). We derive N* using the measured price index for software and
databases (P’,) from EUKLEMS. sg " is estimated using newly identified invest-

ment over and above national accounts estimates (P, N*) and adjusted value-added
(PQQ), as in equations (1) and (2).

6.2.2. Contribution of Capital Deepening in Software and Databases

Second, to estimate the adjustment to the contribution of capital deepening
in software and databases, we first divide the measured contribution (s’;'AlnR’ ) by
measured growth in capital services (AInR’) to derive the measured income share

(s):

1s) o SPAINR,
.= TAInR!

We then multiply the measured income share (sl’i') by measured value-added
(P, V) to recover implied measured rental payments to software and databases
(PRrR’). We divide measured rental payments by the measured real stock (R’) to
back out the implied measured rental price (P):

(16) PrRI =55 Py V,
PiR!
(17) P, = !
R,t R;

To estimate our new measure of adjusted capital services based on an expanded
definition of data capital, we estimate P, N as in (the second equation in) equation
(1), and derive (real) N using the EUKLEMS price index (P,). We then re-build the
capital stock in a PIM from 2011, as in equation (10), using the depreciation rate
(0.315) for software and databases in EUK LEMS. This gives us estimates of adjusted
growth in capital services, AlnR, and growth in capital deepening, Aln(R/H ).

To derive the new adjusted contribution of software and data capital deepen-
ing to growth, we require an estimate of the new adjusted income share. We there-
fore re-estimate rental payments as the measured rental price® (P%) times the (level
of the) new adjusted real stock, which incorporates our expanded definition of
investment (R). The new income share (sg) is estimated as new adjusted rental pay-

ments (P R) divided by adjusted value-added (PQQ).

(18) PpR, =P}, *R,

4OWe therefore implicitly assume the same net rate of return as that found in the EUKLEMS
growth-accounting exercise. Strictly, that rate would change if re-estimated using the ex-post method in
a new growth-accounting exercise with an expanded definition of data capital, but the effect on the
rental price and estimated contributions would be small.
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R PRRt
S04 =
’ PQQt

(19)

Finally, we re-estimate the contribution of capital deepening for our expanded
definition of capital (sgAln (R/H) using the new income share (sg) and new esti-

mates of capital deepening (Aln(R/H). We are now able to compare the new
adjusted contribution with the measured contribution in EUKLEMS.

(20) spAI(R/H), = 5§, + An(R/H),

6.2.3. Contribution of Other Factor Inputs

Third, to estimate the wedge in the contribution of other (capital and labor)
inputs, we estimate the measured and adjusted income share for all other factor
inputs (X) as one minus the measured and adjusted share for software and data,
respectively:

X1 _ Ry
Sy = 1 -5

(21) X R
thzl—st

We derive measured growth in non-R factor inputs per hour (Aln( X/H) ) using
the sum of measured factor contributions (s’lﬁ/Aln(X /H) and income shares (sl’ﬁ/ )
from EUKLEMS (excluding those for software and databases): ’

s¥' Aln(X /H),

X/
Sy

(22) Aln(X/H), =

where:

st/ Aln(X /H), = s Aln(L/H), + s5 N An (KT /H)  + 55T An (KT H) +

RD oIPP
GKRD A1 K 4 §KOIPPI AL K
H t H t

4 V
and:
X' _ L K,NICT/ K, ICT/ K,RD/ K,OIPP!
SV,t _SV,1+SV,t +SV,1 +SV,t +SV,t

where NICT is non-ICT tangible capital and OIPP is other IPPs (artistic originals
and mineral exploration).

We estimate the new contribution of non-software and database factor inputs
(s)Q( Aln(X /H)) using the newly estimated share (s’Q() (from equation (21)) and mea-

sured Aln( X/H)’ (from equation (22)).
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(23) s’Qf Aln(X/H), = s’Q{, x Aln(X /H),

6.2.4. Total Factor Productivity Growth

Finally, using our new estimates of adjusted growth in output (Aln(Q/H)), the
contribution of software and data capital deepening based on an expanded defini-
tion of data capital formation (sgAln(R /H)),and the contribution of non-software

and database factor inputs (s)Q(Aln (X/H)), we can re-estimate AInTFP as a

residual.

6.3. Results: Economic Impact

Table 2 presents our results. We compare measured estimates from
EUKLEMS with our new adjusted estimates and show the scale of adjustment due
to an expanded definition of data investment. Growth-accounting data for Cyprus
(CY), Malta (MT) and Romania (RO) are incomplete in the EUKLEMS database.
Therefore, we present estimates for EU-13 countries and a weighted average for the
aggregate. Measured data are in plain font, new adjusted data are in italics and the
wedge between the two is in bold.

Column 1 is measured labor productivity growth, column 2 is adjusted labor
productivity growth and column 3 is the wedge. Column 4 is the measured contri-
bution of capital deepening in software and databases, column 5 is the adjusted
contribution and column 6 is the wedge. Column 7 is the measured contribution of
other non-R factor inputs (X), column 8 is the adjusted contribution and column 9
is the wedge. Column 10 is measured growth in TFP, column 11 is adjusted growth
in TFP and column 12 is the wedge. The memo item in column 13 is the share of
country adjusted value-added in the EU-13 aggregate.

Estimates in the final row are weighted averages for the EU-13. Estimates are
weighted using PPP(GDP)-adjusted shares of measured (V) and adjusted (Q)
value-added. The latter are shown as a memo item in column 13.4! Column 13
shows that EU-13 estimates are dominated by data for Germany (DE) and the UK.

The estimated wedge is zero for Austria (AT), Czechia (CZ) and Denmark
(DK) as for these countries we estimate P\ N* = 0 in all years (see Figures 2 and 3).
That is, for these countries, expanding the definition of data capital does not raise
estimated investment in software and databases.*?

On the wedge in labor productivity growth (LPG, columns 1 to 3), a posi-
tive term means that adjusted labor productivity growth is greater than measured
growth due to expansion of the production boundary. The wedge term is positive
and largest in Germany (DE) and the UK. A negative value means that expansion

4IEstimated as an average of the share in the current (7) and previous period (1—1) to form a super-
lative index.

42This finding reflects less activity in data capital formation in these countries. It may also reflect
inaccuracy in our estimation of national accounts own-account investment in software and databases
due to an over-adjustment in our effort to remove software investment purchases.
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reduces growth in labor productivity, as newly identified investment is growing
more slowly than measured value-added. The wedge term is negative in: Estonia
(EE); Slovenia (SI); the Netherlands (NL); and Ireland (IE). For the EU-13, the
wedge is 0.05 percent pa meaning that expansion of the asset boundary adds 0.05
percent pa to LPG in 2011-2016.

The wedge in the contribution of software and database capital deepening
(columns 4 to 6) is positive for all countries except Sweden (SE), where it is nega-
tive. For the EU-13, expansion of the asset boundary raises the contribution of
capital deepening over three-fold, from 0.03 percent pa to 0.10 percent pa in 2011—
2016.%3 The wedge in the contribution of other factor inputs (X) is very small in all
countries.

For the EU-13 total, we find that, after rounding, the input and output adjust-
ments explain around 0.02 percent pa (4 percent) of measured TFP growth.

6.3.1. Sensitivity Analyses

To test the robustness of our results, in Table 3 we conduct a series of sensitiv-
ity checks. Table 3 is set out in the same format as Table 2, with all results for the
EU-13 weighted average.

In row 1 we repeat our baseline estimates from Table 2. In row 2, in case of
double counting with R&D,* we test the sensitivity of our results to the exclusion
of all analytical occupations (group 4). Relative to the baseline, the wedge in labor
productivity growth and the contribution of software and data capital deepening
are reduced by approximately 50 percent.

In row 3, we undertake a similar check, this time reducing the time-use factor
for analytical occupations by 50 percent (to 33 percent of time). Relative to the
baseline, the wedge in labor productivity growth and the contribution of software
and data capital deepening are reduced, but by less than in row 2.

In row 4, we consider potential double counting with another knowledge asset
already recorded as GFCF in national accounts. GFCF in mineral exploration
could include costs incurred in data-building and analytics.*> Therefore, in case of
any double counting, we subtract 50 percent of employment in the mining and
quarrying sector*® (NACE 05 to 09) from the employment values and wage costs

430ur new estimates of the contribution of software and data capital deepening are artificially
raised in the earlier years of our estimation by our introduction of newly identified investment in 2011.
Of course, investments in data transformation and knowledge creation were occurring before 2011. This
therefore creates a discontinuity in capital services with growth higher than it would have been had our
estimates of P N* extended further back. One option to remove the discontinuity would be to backcast
our new estimate of investment with the existing measured series, but that would implicitly assume that
the share of data investment in total software and data investment was the same in earlier years as in
later years, which does not seem correct for a growing activity. However, the fast depreciation rate
(0.315) used means that this effect is removed or depreciated away in later years. For comparison, Table

A17 in Appendix G presents estimates for just 2014-2016, which minimizes this initial years effect.
4“Although we think potential for double-counting with R&D is limited for reasons outlined above

in Section 3 and the negative correlation presented in Ap%endix H. ) ) )
4We thank an anonymous referee for pointing out the potential of double counting with mineral

exploration. ) ) o )
46Which can be interpreted either as: 50 percent of employment in mining and quarrying; or 100

percent of employment with an assumed time-use factor of 50 percent. We use our estimate of the high-
medium attainment wage rate from EUKLEMS to estimate.
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that feed into our estimates of investment. Relative to the baseline, the wedge in
labor productivity growth and the contribution of software and data capital deep-
ening are reduced by amounts similar to row 3.

The method in row 4 probably over-estimates any potential double counting
with mineral exploration as not all employees in that industry will be engaged in
capital formation. Therefore, in row 5, we conduct an alternative check. In the
EUKLEMS data, investment in mineral exploration is aggregated with investment
in artistic originals to form GFCF in “Other Intellectual Property Products
(IPPs)”. Separate data on GFCF in mineral exploration is not available for most
European countries. We do however have the observation from Goodridge et al.
(2016) that, in the UK in 2014, 17.4 percent of GFCF in Other IPPs was in mineral
exploration.*” We therefore subtract 20 percent of GFCF in Other IPPs from our
estimate of investment in software and data. Relative to the baseline, estimates of
the wedge to labor productivity growth and capital deepening are unchanged.

The final two rows test sensitivity to our assumed time-use factors. In row 6
we set all time-use factors to 50 percent, which is consistent with OECD-Eurostat
(2020) recommendation for estimating own-account capital formation in software
and databases based on the input of software and database professionals. Relative
to the baseline, growth in labor productivity and the contribution of software and
data capital deepening increase slightly. In row 7 we set all time-use factors to 100
percent, which is consistent with all observed occupations spending all of their
time on capital formation. Relative to the baseline, the wedge in labor productiv-
ity growth is more than doubled and that in software and data capital deepening
increases more than four-fold.

7. CONCLUSIONS

Investments in the transformation and analysis of data are a key aspect of the
latest wave of the ICT revolution and related to developments in artificial intelli-
gence (Al) and the Internet of Things (IoT). Databases have been recognized as
productive capital assets in the System of National Accounts (SNA) since 1993.

However, SNA and OECD recommendations for capitalization are limited to
the cost of the database management system (DBMS, which is software) and the
cost of transferring the data to the format required by the DBMS.

In this paper we extend the definition of the asset boundary to incorporate
capital formation activity in data transformation and data analytics, where both
processes create produced (information and knowledge) assets.

Applying our framework to EU-28 countries, we find that over half (57 per-
cent) of employment engaged in an expanded definition of (software and) data
capital formation is already accounted for in the measurement of own-account
investment in software and databases. The remaining 43 percent is generally not
incorporated in national accounts measurement, where the asset boundary is nar-
rower than that used in this paper. Our analysis shows that activity in data capital

4TWe recognise however that the composition of GFCF in Other IPPs is likely to vary widely be-
tween countries.
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formation currently outside the national accounts asset boundary is growing faster
than national accounts measures in a number of countries.

Our main findings are as follows. First, we find that, in 2011-2018, 1.4 per-
cent of EU-28 employment was engaged in the formation of (software and) data
assets, ranging from 3.5 percent in Luxembourg to 0.5 percent in Greece. Second,
in 2011-2018, mean growth in employment engaged in (software and) data capital
formation in the EU-28 was 5 percent pa, ranging from 12.9 percent pa in Portugal
to —2.4 percent pa in Latvia. Third, expanding the definition of investment in soft-
ware and data raises own-account GFCF in the EU-16 by 61 percent in 2011-2016.
Fourth, in 2011-2016, mean growth in real expanded investment in own-account
software and data assets in the EU-16 was 6.9 percent pa, compared to 2.7 percent
pa in the narrower definition used in national accounts. Fifth, in the context of
growth-accounting, incorporating a wider definition of data capital changes both
output and input. In the EU-13, in 2011-2016: (i) labor productivity growth is
raised from 0.79 percent pa to 0.83 percent pa, which translates to €6.7bn pa of
additional output growth in 2016 if applied to the EU-28 aggregate; and (ii) the
contribution of capital deepening in software and data assets is raised over three-
fold, from 0.03 percent pa to 0.1 percent pa, which translates to €9.4bn pa in 2016
if applied to the EU-28 aggregate.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this
article at the publisher’s web site:

Supplementary Material

Appendix A. Measurement of investment in software and databases in practice

Appendix B. Detailed description of dataset based on occupations

Appendix C. EU LFS data

Appendix D. ISCO-08 catagories

Appendix E. Occupation shares, by country, no time-use adjustment

Appendix F. % of GFCF in software and databases that is own-account

Appendix G. Decomposition of growth (2014-16)

Appendix H. Correlation between software and data investment (PNNGHE,
this paper) and investment in other assets, 2011-17
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